4,352 research outputs found

    Experiments to investigate particulate materials in reduced gravity fields

    Get PDF
    Study investigates agglomeration and macroscopic behavior in reduced gravity fields of particles of known properties by measuring and correlating thermal and acoustical properties of particulate materials. Experiment evaluations provide a basis for a particle behavior theory and measure bulk properties of particulate materials in reduced gravity

    Stiffness of Contacts Between Rough Surfaces

    Full text link
    The effect of self-affine roughness on solid contact is examined with molecular dynamics and continuum calculations. The contact area and normal and lateral stiffnesses rise linearly with the applied load, and the load rises exponentially with decreasing separation between surfaces. Results for a wide range of roughnesses, system sizes and Poisson ratios can be collapsed using Persson's contact theory for continuous elastic media. The atomic scale response at the interface between solids has little affect on the area or normal stiffness, but can greatly reduce the lateral stiffness. The scaling of this effect with system size and roughness is discussed.Comment: 4 pages, 3 figure

    Towards a modeling of the time dependence of contact area between solid bodies

    Full text link
    I present a simple model of the time dependence of the contact area between solid bodies, assuming either a totally uncorrelated surface topography, or a self affine surface roughness. The existence of relaxation effects (that I incorporate using a recently proposed model) produces the time increase of the contact area A(t)A(t) towards an asymptotic value that can be much smaller than the nominal contact area. For an uncorrelated surface topography, the time evolution of A(t)A(t) is numerically found to be well fitted by expressions of the form [A()A(t)](t+t0)qA(\infty)-A(t)]\sim (t+t_0)^{-q}, where the exponent qq depends on the normal load FNF_N as qFNβq\sim F_N^{\beta}, with β\beta close to 0.5. In particular, when the contact area is much lower than the nominal area I obtain A(t)/A(0)1+Cln(t/t0+1)A(t)/A(0) \sim 1+C\ln(t/t_0+1), i.e., a logarithmic time increase of the contact area, in accordance with experimental observations. The logarithmic increase for low loads is also obtained analytically in this case. For the more realistic case of self affine surfaces, the results are qualitatively similar.Comment: 18 pages, 9 figure

    Theory of adhesion: role of surface roughness

    Full text link
    We discuss how surface roughness influence the adhesion between elastic solids. We introduce a Tabor number which depends on the length scale or magnification, and which gives information about the nature of the adhesion at different length scales. We consider two limiting cases relevant for (a) elastically hard solids with weak adhesive interaction (DMT-limit) and (b) elastically soft solids or strong adhesive interaction (JKR-limit). For the former cases we study the nature of the adhesion using different adhesive force laws (FunF\sim u^{-n}, n=1.54n=1.5-4, where uu is the wall-wall separation). In general, adhesion may switch from DMT-like at short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predictions to the results of exact numerical simulations and find good agreement between theory and the simulation results

    Contact area of rough spheres: Large scale simulations and simple scaling laws

    Full text link
    We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the whole range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.Comment: 2 figures + Supporting Materia

    Breakdown of disordered media by surface loads

    Full text link
    We model an interface layer connecting two parts of a solid body by N parallel elastic springs connecting two rigid blocks. We load the system by a shear force acting on the top side. The springs have equal stiffness but are ruptured randomly when the load reaches a critical value. For the considered system, we calculate the shear modulus, G, as a function of the order parameter, \phi, describing the state of damage, and also the ``spalled'' material (burst) size distribution. In particular, we evaluate the relation between the damage parameter and the applied force and explore the behaviour in the vicinity of material breakdown. Using this simple model for material breakdown, we show that damage, caused by applied shear forces, is analogous to a first-order phase transition. The scaling behaviour of G with \phi is explored analytically and numerically, close to \phi=0 and \phi=1 and in the vicinity of \phi_c, when the shear load is close but below the threshold force that causes material breakdown. Our model calculation represents a first approximation of a system subject to wear induced loads.Comment: 15 pages, 7 figure

    Magnetic friction in Ising spin systems

    Full text link
    A new contribution to friction is predicted to occur in systems with magnetic correlations: Tangential relative motion of two Ising spin systems pumps energy into the magnetic degrees of freedom. This leads to a friction force proportional to the area of contact. The velocity and temperature dependence of this force are investigated. Magnetic friction is strongest near the critical temperature, below which the spin systems order spontaneously. Antiferromagnetic coupling leads to stronger friction than ferromagnetic coupling with the same exchange constant. The basic dissipation mechanism is explained. If the coupling of the spin system to the heat bath is weak, a surprising effect is observed in the ordered phase: The relative motion acts like a heat pump cooling the spins in the vicinity of the friction surface.Comment: 4 pages, 4 figure

    Finite-element analysis of contact between elastic self-affine surfaces

    Full text link
    Finite element methods are used to study non-adhesive, frictionless contact between elastic solids with self-affine surfaces. We find that the total contact area rises linearly with load at small loads. The mean pressure in the contact regions is independent of load and proportional to the rms slope of the surface. The constant of proportionality is nearly independent of Poisson ratio and roughness exponent and lies between previous analytic predictions. The contact morphology is also analyzed. Connected contact regions have a fractal area and perimeter. The probability of finding a cluster of area aca_c drops as acτa_c^{-\tau} where τ\tau increases with decreasing roughness exponent. The distribution of pressures shows an exponential tail that is also found in many jammed systems. These results are contrasted to simpler models and experiment.Comment: 13 pages, 15 figures. Replaced after changed in response to referee comments. Final two figures change

    Static Versus Dynamic Friction: The Role of Coherence

    Full text link
    A simple model for solid friction is analyzed. It is based on tangential springs representing interlocked asperities of the surfaces in contact. Each spring is given a maximal strain according to a probability distribution. At their maximal strain the springs break irreversibly. Initially all springs are assumed to have zero strain, because at static contact local elastic stresses are expected to relax. Relative tangential motion of the two solids leads to a loss of coherence of the initial state: The springs get out of phase due to differences in their sizes. This mechanism alone is shown to lead to a difference between static and dynamic friction forces already. We find that in this case the ratio of the static and dynamic coefficients decreases with increasing relative width of the probability distribution, and has a lower bound of 1 and an upper bound of 2.Comment: 10 pages, 2 figures, revtex
    corecore